Home Guía de uso ¿Cómo Publicar? SID Contacto
Identificador #19342· Link permamente: /19342
Tesina de grado  
 

Determinación de algoritmos de clasificación óptimos para la evaluación de riesgo crediticio en el caso de PyMES

caso de estudio: PyMES que operan en plataformas P2P

Por: enviar el email al autor

Realizada en:

Páginas: 60 p.

Idioma: Español

Área de cobertura: Argentina


Este objeto forma parte del micrositio Tesis de grado de Ciencias Económicas

Colaboradores: Mahnic, Pablo David Director/a;

Nombre de la carrera: Licenciatura en Economía

Institución: Universidad Nacional de Cuyo. Facultad de Ciencias Económicas

Título al que opta: Licenciado/a en Economía


Resumen en Español:

En las últimas décadas, y especialmente en los últimos años, el sector financiero se ha visto empujado a desarrollar nuevas técnicas que sirvan para estimar la probabilidad de default de la manera más eficiente y precisa posible a partir de una mayor demanda de créditos y una coyuntura macroeconómica en algunos periodos cada vez más volátil. En relación con esto, la reciente aparición de nuevos actores dentro del sistema financiero como las Fintechs plantean nuevos desafíos debido a la ruptura con el esquema tradicional del sector bancario. Las plataformas P2P son una de las que más relevancia ha tomado en los últimos años dentro del mercado crediticio debido principalmente a la rapidez en el otorgamiento de créditos. Sin embargo, el crecimiento de estas plataformas puede acarrear un significativo riesgo para la estabilidad financiera debido a malos incentivos que aparecen con su funcionamiento, y es a partir de ello que la presente investigación se propone determinar cuál algoritmo de clasificación presenta un mejor desempeño en la obtención de un modelo de puntaje crediticio para los clientes que operan en dichas plataformas.
El presente trabajo consiste en un análisis explicativo y proyectivo en tanto el mismo es de finalidad aplicada. A partir de la base de datos construida en el trabajo de Guidici et al. (2019) acerca de empresas PyMES italianas que participan en plataformas P2P para el año 2015, se lleva a cabo un análisis de estadística descriptiva para conocer las características de los datos y posteriormente se utilizan técnicas econométricas y de entrenamiento de algoritmos de aprendizaje automático para la determinación del algoritmo de clasificación óptimo.
Los resultados indican que: 1) A partir de las diversas métricas de rendimiento utilizadas el algoritmo SVM resulta ser el óptimo, y 2) El algoritmo SVM supera en todas las métricas al clásico modelo Logit.


Disciplinas:
Ciencias económicas

Descriptores:
RENDIMIENTO - PRÉSTAMO - DIAGNÓSTICO

Palabras clave:
Aprendizaje automático - Algoritmos de clasificación

Palabras clave en otro idioma:
Peer to peer lending - Fintechs




Cómo citar este trabajo:

García Ojeda, Juan Gabriel. (2023). Determinación de algoritmos de clasificación óptimos para la evaluación de riesgo crediticio en el caso de PyMES: caso de estudio: PyMES que operan en plataformas P2P (Tesina de grado). Mendoza, Universidad Nacional de Cuyo. Facultad de Ciencias Económicas.
Dirección URL del informe: https://bdigital.uncu.edu.ar/19342.
Fecha de consulta del artículo: 24/11/24.

Licencia Creative Commons
Este obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 3.0 Unported.
Conozca más sobre esta licencia >

 
 
Herramientas

NAVEGAR

Jardín Botánico de Chacras de Coria

Fichas descriptivas de las especies del jardín botánico en la Fac. de Ciencias Agrarias.

Derechos Humanos

Selección de trabajos alrededor de la temática de los Derechos Humanos en la Argentina y en Mendoza en particular.

El vino en Mendoza

Una selección de artículos, tesis, informes de investigación y videos sobre temáticas de la vid, la vinificación, la economía y la cultura del vino mendocino

Posgrado de la Facultad de Filosofía y Letras

Espacio virtual que pone a disposición tesis doctorales y trabajos finales de maestría de posgrados dictados en la Facultad de Filosofía y Letras de la UNCuyo.

Tesis de grado de Ciencias Económicas

En este sitio se pueden consultar las tesis de grado de la Facultad de Cs. Económicas de la UCuyo. La búsqueda se puede hacer por autor, titulo y descriptores a texto completo en formato pdf.



//DOSSIERS ESPECIALES

Cada Dossier contiene una selección de objetos digitales en diversos formatos, bajo un concepto temático transversal.
La propuesta invita al usuario a vincular contenidos y conocer los trabajos que la UNCuyo produce sobre temáticas específicas.

 



Ingreso a la Administración

Secretaría Académica
SID - UNCuyo - Mendoza. Argentina.
Comentarios y Sugerencias
Creative Commons License